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-
Sequential Language Models

n

P(S: W1,W2,...,Wn) :HP(Wi’WI:i—l) (1)
i=1

@ State of the Art

e based on Long Short Term Memory Network Language Model
(Hochreiter and Schmidhuber, 1997; Sundermeyer et al., 2012)
o Billion word benchmark results reported in Jozefowicz et al., (2016)

Models PPL
KN5 67.6
LSTM 30.6
LSTM+CNN INPUTS | 30.0
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Will tree structures help LMs?
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@ Probably yes
o LMs based on Constituency Parsing (Chelba and Jelinek, 2000; Roark,

2001; Charniak, 2001)
o LMs based on Dependency Parsing (Shen et al., 2008; Zhang, 2009;

Sennrich, 2015)
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LSTMs + Dependency Trees = TreeLSTMs
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o Why?
o Sentence Length N v.s. Tree Height log(N)
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LSTMs + Dependency Trees = TreeLSTMs

—I— manufacturer year  cars in
=/ /[ \

The luxury auto last 1,214 U.S.
the
o Why?
o Sentence Length N v.s. Tree Height log(N)
@ How?

o Top-down Generation
o Breadth-first search
o reminiscent of Eisner (1996)
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Generation Process (Unlabeled Trees)

The luxury auto manufacturer last year sold 1,214 cars in the U.S.
ROOT
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Generation Process (Unlabeled Trees)
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N
Tree LSTM

P(SIT) = I[[ PwDwW) (3)

w€eBFS(T)\ROOT

@ D(w) is the Dependency Path of w.
@ D(w) is a generated sub-tree.

@ Works on projective and unlabeled dependency trees.
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Tree LSTM
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Tree LSTM
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N
Tree LSTM
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N
One Limitation of Tree LSTM
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|
Left Dependent Tree LSTM

w2 w1

GEN-NX-L GEN-NX-L

o o)

®
[ 18 -
® o

W3 “"2 Wi

Zhang et al., 2016 Tree LSTM

12th June, 2016

9/18



|
Left Dependent Tree LSTM
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Left Dependent Tree LSTM
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|
Left Dependent Tree LSTM
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Experiments
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-
MSR Sentence Completion Challenge

1) I have seen it on him , and could _____ to it.
a) write b) migrate c)climb d) swear e) contribute

e Training set: 49 million words (around 2 million sentences)
@ development set: 4000 sentences

o test set: 1040 completion questions.
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IvLBL

LBL

Mnih and Kavukcuoglu, 2013 ‘ 55.5
Mnih and Teh, 2012 | 54.7
35 40 45 50 55 60 65
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IvLBL

LBL
LSTM
BiLSTM

Skip-gram + RNNMEs

TREELSTM
LDpTREELSTM

Mnih and Kavukcuoglu, 2013 ‘55.5

Mnih and Teh, 2012 | 54.7

This work | 57.02

This work 49.90

Mikolov et al., 2013 58.9

Our model ‘ 56.73

Our model ‘60.67

T T T T T 1

35 40 45 50 55 60 65

Zhang et al., 2016 Tree LSTM 12th June, 2016 12 /18



Dependency Parsing Reranking

o Rerank 2nd Order MSTParser (McDonald and Pereira, 2006)

@ We train TreeLSTM and LdTreeLSTM as language models.

@ We only use words as input features; POS tags, dependency labels or
composition features are not used.

13 /18
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Dependency Parsing Reranking
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Tree Generation

Four binary classifiers:
o Add Left? No!

ROOT
’

A

Features: hidden states and
word embeddings

Classifiers Accuracies
Add-Left 94.3
Add-Right 92.6
Add-Nx-Left 93.4
Add-Nx-Right 96.0
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Tree Generation
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Tree Generation

Four binary classifiers:
o Add Left?
e Add Right?
gt o Add Next Left?
\ o Add Next Right?
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N
Tree Generation

ROOT

e — /—Fx\\.\ é .—\A
Profit widened to $ UNK million , from $ 1.37 billion a year earlier .

ROOT

/ —
But Mr. O’Kicki said all industry executives certainly do n’t have to focus now .
ROOT

P— -

That would postpone a stock activity in the forefront of the monetary policy .
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Conclusions

Syntax can help language modeling.

Predicting tree structures with Neural Networks is possible.

Next Steps:

e Sequence to Tree Models
o Tree to Tree Models

e o

@ code available:
https://github.com/XingxingZhang/td-treelstm

Thanks & Questions?
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