Top-down Tree Long Short-Term Memory Networks

Xingxing Zhang, Liang Lu, Mirella Lapata

School of Informatics, University of Edinburgh

12th June, 2016

Zhang et al., 2016

12th June, 2016 1 / 18

Sequential Language Models

$$P(S = w_1, w_2, \dots, w_n) = \prod_{i=1}^n P(w_i | w_{1:i-1})$$
(1)

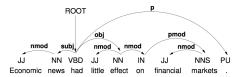
State of the Art

- based on Long Short Term Memory Network Language Model (Hochreiter and Schmidhuber, 1997; Sundermeyer et al., 2012)
- Billion word benchmark results reported in Jozefowicz et al., (2016)

Models	PPL
KN5	67.6
LSTM	30.6
LSTM+CNN INPUTS	30.0

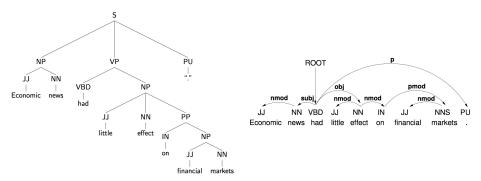
Will tree structures help LMs?





3

Will tree structures help LMs?

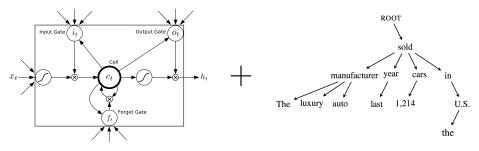


Probably yes

- LMs based on Constituency Parsing (Chelba and Jelinek, 2000; Roark, 2001; Charniak, 2001)
- LMs based on Dependency Parsing (Shen et al., 2008; Zhang, 2009; Sennrich, 2015)

► < ∃ ►</p>

LSTMs + Dependency Trees = TreeLSTMs

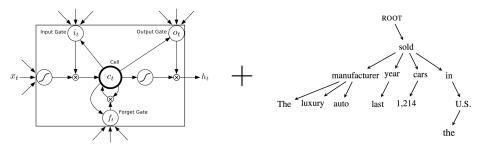


• Why?

• Sentence Length N v.s. Tree Height log(N)

-

LSTMs + Dependency Trees = TreeLSTMs



- Why?
 - Sentence Length N v.s. Tree Height log(N)
- How?
 - Top-down Generation
 - Breadth-first search
 - reminiscent of Eisner (1996)

-∢∃⊳

The luxury auto manufacturer last year sold 1,214 cars in the U.S. $$\rm ROOT$$

3

The luxury auto manufacturer last year sold 1,214 cars in the U.S. ROOT

3

The luxury auto manufacturer last year sold 1,214 cars in the U.S. ROOT sold year

3

イロト イヨト イヨト イヨト

The luxury auto manufacturer last year sold 1,214 cars in the U.S. ROOT

manufacturer year

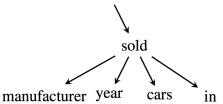
3

The luxury auto manufacturer last year sold 1,214 cars in the U.S. ROOT

manufacturer year cars

3

The luxury auto manufacturer last year sold 1,214 cars in the U.S. ROOT $$\backslash$



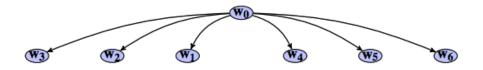
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The luxury auto manufacturer last year sold 1,214 cars in the U.S. ROOT sold manufacturer year cars in luxury 1,214 The last U.S. auto the

► < ∃ ►</p>

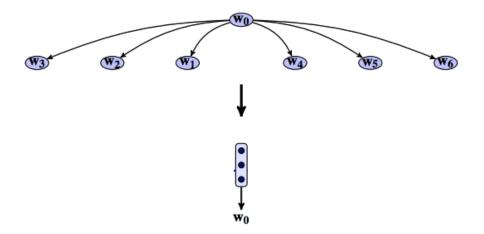
- $\mathcal{D}(w)$ is the Dependency Path of w.
- $\mathcal{D}(w)$ is a generated sub-tree.
- Works on projective and unlabeled dependency trees.

3



3

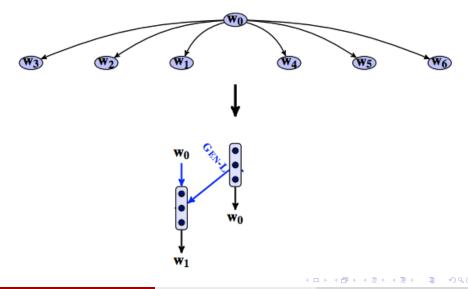
<ロ> (日) (日) (日) (日) (日)

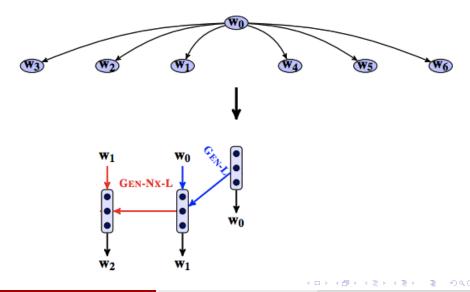


Z	hang	et :	al	., 1	201	16

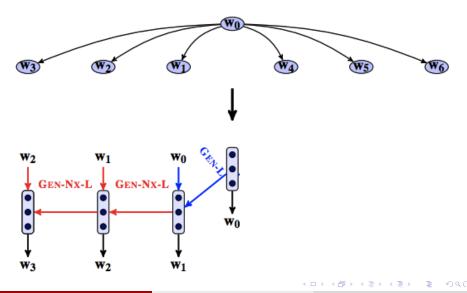
- 2

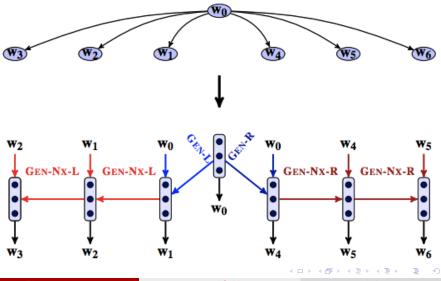
<ロ> (日) (日) (日) (日) (日)





12th June, 2016 7 / 18

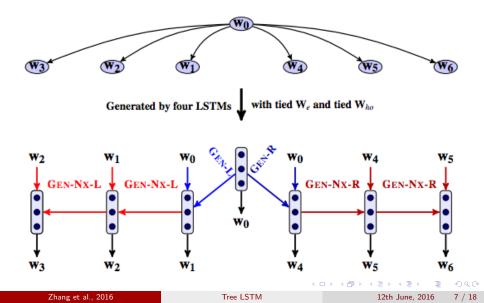




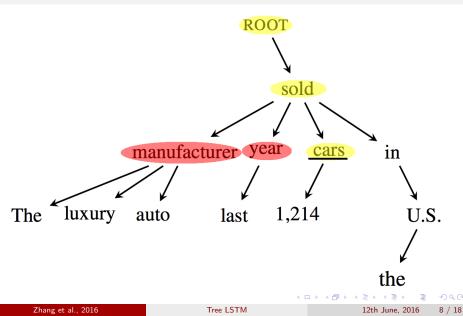
Zhang et al., 2016

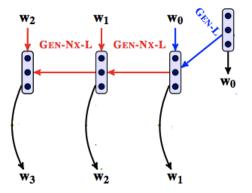
Tree LSTM

12th June, 2016 7 / 18

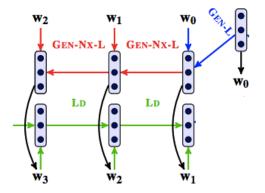


One Limitation of Tree LSTM

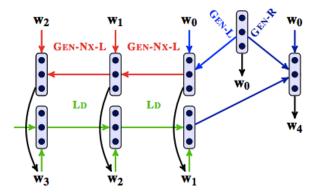




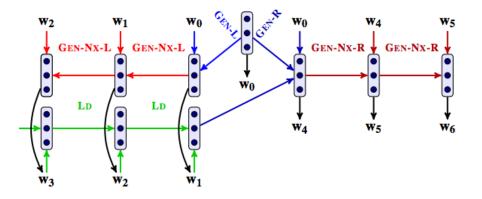
3



3



3



3

-

Image: A match a ma

Experiments

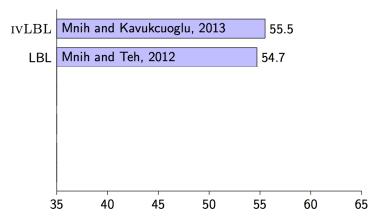
<ロ> (日) (日) (日) (日) (日)

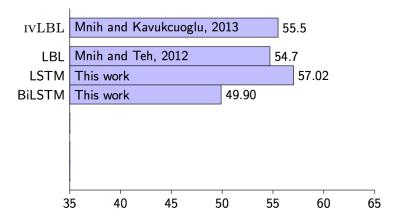
- 2

MSR Sentence Completion Challenge

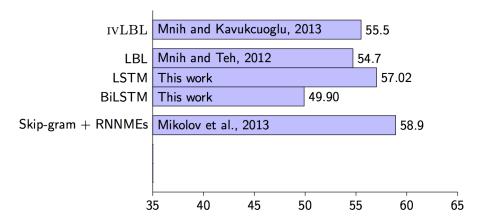
- I have seen it on him, and could _____ to it.
 a) write b) migrate c) climb d) swear e) contribute
- Training set: 49 million words (around 2 million sentences)
- development set: 4000 sentences
- test set: 1040 completion questions.

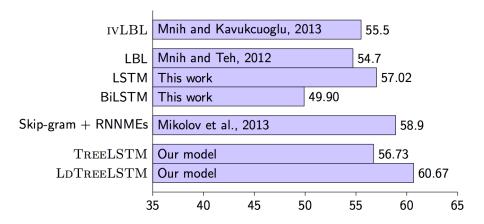
(4月) とうきょうきょう





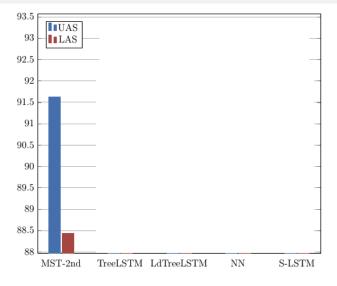
э





3

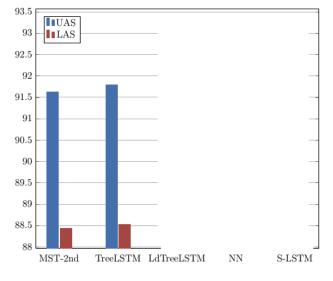
- Rerank 2nd Order MSTParser (McDonald and Pereira, 2006)
- We train TreeLSTM and LdTreeLSTM as language models.
- We only use words as input features; POS tags, dependency labels or composition features are not used.



NN: Chen & Manning, 2014; S-LSTM: Dyer et al., 2015.

Zhang et al., 2016

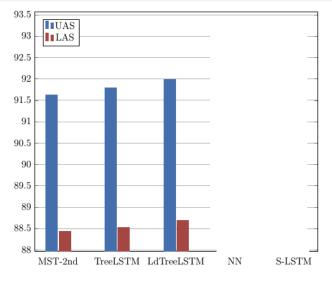
12th June, 2016 14 / 18



NN: Chen & Manning, 2014; S-LSTM: Dyer et al., 2015.

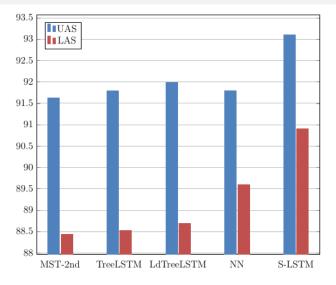
Zhang et al., 2016

12th June, 2016 14 / 18



NN: Chen & Manning, 2014; S-LSTM: Dyer et al., 2015.

Zhang et al., 2016



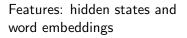
NN: Chen & Manning, 2014; S-LSTM: Dyer et al., 2015, Carton Structure and Structure an

Zhang et al., 2016

12th June, 2016 14 / 18

э

Four binary classifiers: • Add Left? No!



Classifiers	Accuracies
Add-Left	94.3
Add-Right	92.6
Add-Nx-Left	93.4
Add-Nx-Right	96.0

э

Four binary classifiers:Add Right? Yes!

Features: hidden states and word embeddings

Classifiers	Accuracies
Add-Left	94.3
Add-Right	92.6
Add-Nx-Left	93.4
Add-Nx-Right	96.0

- ∢ ≣ →

э

Zhang et al., 2016

Tree LSTM

Four binary classifiers:Add Right? Yes!

Features: hidden states and word embeddings

Classifiers	Accuracies
Add-Left	94.3
Add-Right	92.6
Add-Nx-Left	93.4
Add-Nx-Right	96.0

э

Four binary classifiers:

• Add Next Right? No!

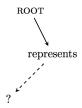
Features: hidden states and word embeddings

Classifiers	Accuracies
Add-Left	94.3
Add-Right	92.6
Add-Nx-Left	93.4
Add-Nx-Right	96.0

Image: A match a ma

3

Four binary classifiers:Add Left? Yes!

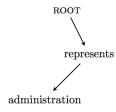


Features: hidden states and word embeddings

Classifiers	Accuracies
Add-Left	94.3
Add-Right	92.6
Add-Nx-Left	93.4
Add-Nx-Right	96.0

э

Four binary classifiers:Add Left? Yes!



Features: hidden states and word embeddings

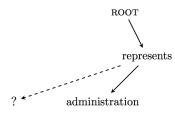
Classifiers	Accuracies
Add-Left	94.3
Add-Right	92.6
Add-Nx-Left	93.4
Add-Nx-Right	96.0

(日) (周) (三) (三)

3

Four binary classifiers:

• Add Next Left? No!



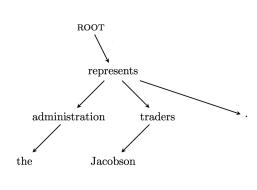
Features: hidden states and word embeddings

Classifiers	Accuracies
Add-Left	94.3
Add-Right	92.6
Add-Nx-Left	93.4
Add-Nx-Right	96.0

Image: A math a math

4 Ten

э



Four binary classifiers:

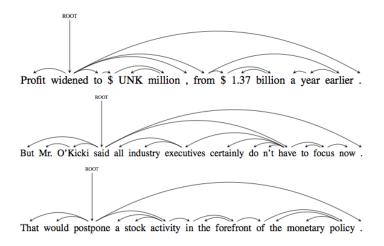
- Add Left?
- Add Right?
- Add Next Left?
- Add Next Right?

Features: hidden states and word embeddings

Classifiers	Accuracies
Add-Left	94.3
Add-Right	92.6
Add-Nx-Left	93.4
Add-Nx-Right	96.0

47 ▶

-



イロン イヨン イヨン イヨン

Conclusions

- Syntax can help language modeling.
- Predicting tree structures with Neural Networks is possible.
- Next Steps:
 - Sequence to Tree Models
 - Tree to Tree Models
- code available:

https://github.com/XingxingZhang/td-treelstm

Thanks & Questions?

イロト 不得下 イヨト イヨト