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Document Summarization
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Here was a glimpse into the exciting future Ole Gunnar Solskjaer has mapped out for
his young Manchester United side.

It’s only mid-July and this was an outnumbered Leeds side, but there were
encouraging signs all the same.

A first senior goal for Mason Greenwood, a wonderful effort from Marcus Rashford
and a cute piece of skill from Tahith Chong to earn a penalty for United’s fourth goal

were the standout moments.

@ Gary Day/Frozen in Motion/REX
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Document Summarization

« Manchester United won the bragging rights over Leeds with a 4-0 win in Perth
« Mason Greenwood got them off to a perfect start to score inside 10 minutes

« Marcus Rashford doubled the lead just before the half-hour mark in Perth

« Phil Jones made it 3-0 five minutes after coming on as a substitute at half-time
« Tahith Chong superbly won a penalty which Anthony Martial easily converted
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Related Work: Summarization

Extractive Summarization (This work)

e Sentence Ranking/Classification
o Sparse Features: Nenkova and McKeown (2011)
o Hierarchical CNN/LSTM:

o Cheng and Lapata, (2016)
e Narayan et al., (2018); Dong et al., (2018)
e Zhang et al., (2018); Zhou et al., (2018)

Abstractive Summarization

o Seq2Seq: Copy-Generator (See et al., 2017)
o Reinforce (Paulus et al., 2017)
o Extract-Generate

o Chen and Bansal, (2018); Gehrmann et al., (2018)
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Extractive Summarization with Hierarchical Transformers

Is summary?

Doc Encoder
Transformer

sent, sent; sent,

Sent Encoder
Transformer
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Extractive Summarization with Hierarchical Transformers

Is summary?

Doc Encoder
Transformer

@ Why not train with
extractive labels?

@ Pre-training
Hierarchical
Transformers (i.e.
Document Encoders)
may help. How?

sent, sent; sent,

Sent Encoder
Transformer
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Pre-training of Nonhierarchical /Sentence Encoders

Language Modeling as Training Objective
o ELMo (Peters et al., 2018)

Wait 0s Wait
LsTM> w w LSTM€
BOS Wait Wait ec EOS

o GPT (Radford et al., 2018)

Wait a sec EOS

Transformer

BOS Wait a sec
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Pre-training of Nonhierarchical /Sentence Encoders

Masked Language Modeling (Cloze) as Training Objective

o Cloze (Taylor, 1953)
o BERT (Devlin et al., 2019)

Wait

Transformer

BOS [MASK] a sec

o Obtained better results than L2R or R2L models
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Pre-training of HIBERT

Hlerachical Bidirectional Encoder Representations from Transformers

Doc Encoder
Transformer

sent, masked
sent,

sent,
Sent Encoder

Transformer

sent;= w,! w;t EOS
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Pre-training of HIBERT
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Pre-training of HIBERT

Document Masking

William Shakespeare is a poet . He died in 1616 . He
is regarded as the greatest writer .

o Randomly select 15% of the sentences in a doc
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Pre-training of HIBERT

Document Masking

William Shakespeare is a poet . He died in 1616 . He
is regarded as the greatest writer

o Randomly select 15% of the sentences in a doc

o MASK: 80% of cases, we mask them

William Shakespeare is a poet . [MASK] [MASK] [MASK]
[MASK] [MASK] He is regarded as the greatest writer .

o KEEP: 10% of cases, we keep them unchanged

o REPLACE: 10% of cases, we replace them with random sentences

William Shakespeare is a poet . Birds can fly . He is
regarded as the greatest writer .
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Experiments
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Datasets

] Dataset \ Train Dev Test
Gigaword | 6,626,842 13,368 —
CNNDM | 287,226 13,368 11,490
NYT50 137,778 17,222 17,223

o Gigaword: Part of Giagaword, 2.8 billion words

e Used for pre-training
e CNNDM: CNN/DailyMail Dataset (Hermann et al., 2015)
@ NYT50: New York Times Dataset

e remove documents whose summaries are shorter than 50 words
(Durrett et al., 2016; Xu and Durrett, 2019)
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-
Training Details

@ Three-stage Training:

e Open-domain Pre-training (Gigaword)
o In-domain Pre-training (CNNDM or NYT50)
e Fine-tuning on CNNDM or NYT50

@ Batch Size: 256 documents; 45 epochs for open-domain, 100 to 200
epochs for in-domain pre-training

e HiBERTs: L =6, H=512and A=38
@ HIBERT): L=6, H=768 and A = 12

@ around 20 hours per epoch for HIBERT )y, with 8 Nvidia Tesla V100
GPUs, open domain pre-training takes around 35 days!
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Automatic Evaluation: CNN/DailyMail Dataset
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|
Human Evaluation: CNN/DailyMail Dataset

|M0dels |lst 2nd 3rd 4th 5th 6th |McanR|

Lead3 0.03 0.18 0.15 030 030 0.03| 3.75
DCA 0.08 0.15 0.18 0.20 0.15 0.23| 3.88
Latent 0.05 0.33 0.28 0.20 0.13 0.00| 3.03
BERT 0.13 0.37 032 0.15 0.03 0.00| 2.58
HiBERT,;, | 030 035 0.25 0.10 0.00 0.00| 2.15
Human 0.58 0.15 0.20 0.00 0.03 0.03| 1.85

e DCA (Celikyilmaz et al., 2018); Latent (Zhang et al., 2018)
@ MeanR: Mean Ranks; Lower is better

e HIBERT)y is significantly better than all models except for Human
(p < 0.05 with student t-test)
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Conclusions

@ The core part of a neural extractive summarization model is the
hierarchical document encoder

@ We proposed a method to pre-train it on unlabeled data

@ Experiments show the pre-training method is effective

o Future Work:

o Apply HIBERT to other tasks
o Improve architectures of HIBERT
o New and free pre-training tasks
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